Quantitation of ergosterol content and gene expression profile of ERG11 gene in fluconazole-resistant Candida albicans

Authors

  • Alireza Khodavandi Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
  • Fahimeh Alizadeh Department of Microbiology, Yasooj Branch, Islamic Azad University, Yasooj, Iran.
  • Sara Zalakian Department of Microbiology, Yasooj Branch, Islamic Azad University, Yasooj, Iran.
Abstract:

Background and Purpose: The frequency of opportunistic fungal infections in immunocompromised patients, especially by Candida species, has sharply increased in the last few decades. The objective of this study was to analyse the ergosterol content and gene expression profiling of clinical isolates of fluconazole resistant Candida albicans. Materials and Methods: Sixty clinical samples were identified and collected from immunocompromised patients, namely recurrent oral, vaginal, and cutaneous candidiasis, during 2015-16. Antifungal susceptibility testing of fluconazole against clinical Candida species was performed according to Clinical and Laboratory Standards Institute guidelines. Ergosterol content and gene expression profiling of sterol 14α-demethylase (ERG11) gene in fluconazole-susceptible and –resistant C.albicans were investigated. Results: The specimens consisted of C. albicans (46.67%), Candida krusei (41.67%) (and Candida tropicalis (11.67%). All the isolates were resistant to fluconazole. No significant reduction was noted in total cellular ergosterol content in comparison with untreated controls in terms of fluconazole-resistant C. albicans. The expression level of ERG11 gene was down-regulated in fluconazole-susceptible C. albicans.Eventually, the expression pattern of ERG11 gene revealed no significant changes in fluconazole-resistant isolates compared to untreated controls. The results revealed no significant differences between fluconazole-susceptible and –resistant C. albicans sequences by comparison with ERG11 reference sequence. Conclusion: Our findings provide an insight into the mechanism of fluconazole resistance in C. albicans. The mechanisms proposed for clinical isolates of fluconazole-resistant C. albicans are alteration in sterol biosynthesis, analysis of expression level of ERG11 gene, and analysis of gene sequences. Nonetheless, further studies are imperative to find molecular mechanisms that could be targeted to control fluconazole resistance.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Effect of biogenic selenium nanoparticles on ERG11 and CDR1 gene expression in both fluconazole-resistant and -susceptible Candida albicans isolates

Background and Purpose: Candida albicans is the most common Candida species (spp.) isolated from fungal infections. Azole resistance in Candida species has been considerably increased in the last decades. Given the toxicity of the antimicrobial drugs, resistance to antifungal agents, and drug interactions, the identification of new antifungal agents seems essential. In this study, we assessed t...

full text

MUTATION IN HOTSPOT REGIONS OF THE ERG11 GENE AND FLUCONAZOLE RESISTANCE IN CLINICAL ISOLATES OF CANDIDA ALBICANS IN RASHT CITY

Background & Aims: Nowadays, the common use of azoles has led to increased resistance to azole among Candida albicans strains. Amino acid substitutions in azole target enzyme, ERG11p, is attributed to azole resistance in some clinical strains of Candida albicans. The aim of this study was to evaluate ERG11 gene mutations in fluconazole-resistant isolates of Candida albicans in Rasht. Materials...

full text

Expression of Lanosterol 14-Demethylase (ERG11) Gene of Three-Drug Combinations in Candida albicans

Patients with impaired immunity are at particular risk of infections with Candida albicans. Antifungal drugs such as azoles commonly used for candidiasis treatment, but drug resistance is one of the most common problems for public health. The aim of this study was to evaluate the expression of lanosterol 14-demethylase (ERG11) gene for three-drug combinations in C. albicans. Disk diffusion and ...

full text

Quantitation of ergosterol content: novel method for determination of fluconazole susceptibility of Candida albicans.

MIC end points for the most commonly prescribed azole antifungal drug, fluconazole, can be difficult to determine because its fungistatic nature can lead to excessive "trailing" of growth during susceptibility testing by National Committee for Clinical Laboratory Standards broth macrodilution and microdilution methods. To overcome this ambiguity, and because fluconazole acts by inhibiting ergos...

full text

Investigation of Mutations of ERG11 Gene in Fluconazole Resistant Strains of Candida Albicans Isolated From Patients With Volvovaginitis in West of Mazandaran

Background and Aims: Candida albicans as an opportunistic fungal pathogen in human is the cause of volvovaginitis candidiasis. Azole resistance is cinsiderable as worldwide problem in treatment of candidiasis. Azole resistance can occur through different mechanisms such as mutation in ERG11 gene. The aim of our study was evaluation of ERG11 gene mutations in fluconazole resistant islotes of C. ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue None

pages  13- 19

publication date 2017-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023